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PREFACE

This Memorandum cont.inues RAND's research into the statistical
analysis of computer simulation experiments. The overall purpose is
to find methods for efficiently extracting useful information from
time series generated by these experiments. This particular study
degscribes a technique for estimating the required sample size in a
simulation experiment, and provides flow charts and computer pro-
grams for incorporating the proposed technique directly into a com-
puter simulation program. Emphasis is on relieving the investigator
of the need to interact with the ongoing simulation to determine when
the desired statistical precision has been ocbtained.

Preceding work on this subject is described in G. S. Fishman and

P. J. Kiviat, Spectral Analysis of Time Series Generated by Simulation

Models, The RAND Corporation, RM-4393-PR, February 1965; G. S. Fishman,

Problems in the Statistical Analysis of Simulation Experiments: The

Comparison of Means and the Length of Sample Records, The RAND Corpora-

tion, RM-4880-PR, February 1966; and G. S. Fishman, Digital Computer

Simulation: The Allocation of Computer Time in Comparing Simulation

Experiments, The RAND Corporation, RM-5288-1-PR, October 1967. .

il
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SUMMARY

A method will be described for estimating and collecting the
sample size needed to evaluate the mean of a process (with a spec-
ified level of statistical accuracy) in a simulation 2xperiment. A

procedure is also described for incorporating the determination and

collecticon of the sample size into a computer library routine that can

be called by the cngoing simulation program.

We present the underlying probability model that enables us to
denote the variance of the sample mean as a function of the autore-
gressive representation of the process under study. And we describe
the estimation and testing of the parameters of the autoregressive
representation in a way that can easily be "built ianto" a computer
program.

Several reliability criteria are discussed for use in determin-
ing sample size. Since these criteria assume that the variance of
the sample mean is known, an adjustment is necessary to account for
the substitution of an estimate for this variance. It is suggested
that Student's distribution be used as the sampling distribution,
with "equivalent degrees of freedom" determined by analogy with a
sequence of independent observations.

A bias adjustment is described that can be applied to the begin-
ning of the collected data to reduce the influence of initial condi-
tions on events in the experiment. Four examples are presented using
these techniques, and comparisons are made with known theoretical
solutions. Finally, we present the minimum variance unbiased esti-

mator of the sample mean, which turns out to be a function of the
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autoregressive coefficients., Before these results can be used in
practice, more will have to be known about their sampling properties.
In conclusion, it is noted that the use of the procedures de-
scribed here relieves the user of the task of continually interacting
with the simulation experiment to determine whether his results are

within an acceptable range.
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1. INTRODUCTION

In many simulation experiments, observations collected on the
process of interest are positively correlated. This means that an
observation that exceeds {(falls bezlow) the population mean of the
process tends to be followed by another observation that exceeds
{falls belcw) the mean. In a =ore limited set of simmlation experi-
—ents, successive observations are negatively correlated so that an
observation exceeding {falling below) the mean tends to follow one
falling below (exceeding) i:.

Estiz=ating a population mean fro=m scaple data is a com=on objec-
tive of the statistical analysis of a sizmalation experiment and, —ore-
over, an esticate of the variance of the sampie =ean is heipful in
assessing how representative the sa=pi. mean is of the population mean.
For uncorrelated observations, the sasmple population variance divided
by the sa=ple size provides a convenient estimate of the variance of
the sample oean. For correlated data, the variance of the sample sean
is a function of the correlation between cbservations, a fact that

causes considerable difficuity in estimating this variance.

Esticators that take account of the correlation to varying extents

4,61, but all require a Zegree

have een suggested ia the iiterature
of suhjective judgment regarding their adequacy. Idesliy, one wants
an algoritha that can be "built into™ a computer simulation progranm
aand can objectively estimate the sample size needed to cbtain a speci-

fied confidence interval feor a prpulation mean. Such a procedure would

relieve an investigator of the burden of estimating the variance of

the sample mean from a data sample cbtained from a trial run, estimating
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the sample size necessary for the specified confidence interval, and

then collecting that many more observations in a successive simula-
tion run. An ideal program would accomplish thege tasks without tak-
ing the simulation off the computer., This Memorandum describes an al-
gorithm for doing this.

Estimating the population mean and estimating the variance of
this resulting estimate are problems in statistical inference that
require an underlying probability model. Some models are more con-
venient than others, and it is natural to assume a model that yields
desirable statistical properties. For example, we may assume that
observations are independent and identically distributed if we be-
lieve that the outcome of any trial is not influenced by the outcomes
of other trials and also if the ordering of the trials does not affect
their outcomes.

1f we suspect that the observations are statistically dependent
but that the dependence is strictly nonlinear, then we may assume
that the observations sre uncorrelated. This model is less restric-
tive than that for the independent case, for it implies that the ob-
gservations share a common mean and & congon variance; the covariance
between any two observations is zero, but no specification is made
regarding the nonlinear statistical relationship among observations.

The assumptions of independent or uncorrelated observations ap-
ply in many statistical analyses; in simulation experiments, however,
observations are often autocorrelated. This means, statistically,
that an obseivation is linearly dependent on preceding observations.

Since failure to acknowladge this autocorrelation can seriously impair
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the veracity of conclusions based on statistical results, a probabil-
ity model is needed to account for autocorrelation.

The commonly employed estimator of the population mean for auto-
correlated observations has the same algebraic form as that for inde-
peadent observations. In the independent case, it is statistically
unbiased and hae minimum variance; in the autocorrelated case, these
properties h-ld only for large samples. Nevertheless, the estimator
has much intuitive appeal and can be computed easily, two properties
that account for its common use.

The variance of the sample mean is a function of the autocorre-
lation between ocbservations and, therefore, specification regarding
the covariance structure is necessary to make the estimation of this
variance a tractable statistical problem. The probability model of
a covariance stationary sequence provides a convenient framework with-
in which this problem and manry others can be solved. It is this model
that we describe in Sec. 2.

In {4], the general properties of a covariance gtationary se-
gquence enable us to derive a useful estimator of the variance of the
sampie mean; Sut, unfortunately, that estimator is difficult to build
into a simulation program. By adding aeveral mild restrictions to the
model, we may represent a presernt observation as a linear combination
of past observations plus a random residual uncorrelated with past
observations. Thias scheme i1s called an aqutoregressive representation
of the sequence, and the weights in the linear combination are called
the autoregressive ccefficients. For large samples, it is shown that

a knowledge of the autoregressive coefficients and the variance of
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the uncorrelated residuals enables us to approximate the variance of
the sample mean closely.

While the autoregressive coefficients and the residual variance
are unknown, we can estimate them as described in Sec. 3. We then use
these to estimate the variance of the sample mean. This approach 1s
desirable because the estimation and testing of the ccefficients, the
computation of the sample residual variance, and the estimation of
the variance of the sample mean can all be accomplished directly in a
simulation program wd require no user intervention.

Section 4 discusses several criteria for determining sample size.
In some experiments we may want the confidence interval to have some
fixed absolute width around the mean. In others we may require the
width to be 2 fixed percentage of the mean. To account for the use
of an estimate for the variance of the gample mean, Sec. 5 introduces
the t distribution with appropriate adjustwments for its use with auto-
correlated data. Initiesl conditions often influence the behavior of
the prucess under study; and it is desirable, whenever possible, to
reduce the extent of this influence., Secticn 6 covers this topic.

In Sec. 7, several exa=mples with known solutions are presented
to 1llustrate how well the techniques work statistically. The exam-
ples include zero-, first-, and second-order autoregressive schemes
and a single-server queueing problem with independent and exponential-
ly distributed interarrival times and service times. These exaaples
are simulated and the estimated sample sizes compared with known theco-
retical results presented in [5].

Earlier we remarked that the conventional estimator of the mean

of an autocorrelated sequence is unbiased and minimum variance only
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for large samples., 1t is therefore instructive to study what can be
done to derive an improved estimator of the mean for a moderate sample
size and how feasible and worthwhile it is to use the improvzd esti-
mator. Section 8 presents the minimum variance estimator and compares
it with the conventionsl mean estimator.

Ke 2onclude that the algorithms suggeated here can contribute
gignificantly to solving the problem of determining sample gize in a
simulation experiment. Because they can be used while minimally in-
volving the simulaticn experiment itself, they are worthy of consider-
ation, especially since they ¢an bte easily modified to meet individ-
usl user preferences. Also, the suggestions regarding reliability
criteria, unbiaeedness, ninimum variance and variance reduction tech-~
niques provide users with ianformation that enables them to draw use-

ful inference about the process being studied.

[ TTem
. w
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2. THE MODEL

In many simulation experiments, the process of interest appears
as a sequence of events in which the index that orders the events may
play a role in defining the relationship among events. The index may
be time; for example, the number of units waiting for service at time
t, wvhere t assumes T different values. The index may simply denote
order; for example, the waitinz time for the tth unit to receive ser-
vice, where t assumes the values 1, ..., N.

When the set of ordered events is subject to random variation,
it is called a stochastic sequence. Let xt be the value assumed by
the tth event in which the index t runs over the integers. Then we
denote the stochastic sequence by {xt; t=0,%+1, ..., T »} or, mcre
concisely, by X. We could index the events on a finite set of non-
negative integers, but the above definition of X offers several expo-
sitional convenicences without impairing its applicability in the pres-
ent context.

Let the sejuence X have mean
(2.1) B, = E(X)

and autocovariance function

(2.2) R, = EL(X, - u )X, - )] .

’

if By is finite and independent of the ordering index t, and Rb ¢ is
]

finite and a function only of the number of intervening events s-t,

then we may write the mean and autocovariance functicn as
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b= B(xt) »
(2.3)

R, =R __=El(X -wX -wl,

respectively. A secuence satisfying (2.3) is calied covariance, mean-
*
square, weakly or wide-sense stationary.

Suppose that

(02 s =t

(2.4) R _, = )
0 sft

Then X is a sequence of uncorrelsted events, asnd conventional methods
of statistical inference apply when estimating pw. In general, (2.4)
does not hold and more sophisticated inferential methods are needed.

For a sample of N observations, we compute the conventional sample

mean as

N
(2.53) Xy = (llmzxt ,

t=1

*
See [1] for a more complete description of covariance stationary
sequences.
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with variance

N-1
Var().{N) = (IINZ) Z R,

s,t=1

(2.5b)

N-1
-am Y a- lsimr, .
s=1-N

We also require that
(2.6) ég Rs =0.

This restriction is reasonable, for we would expect the covariance
between events in the series to vanish as the number of intervening

events increases. Then one may show that

N-1
2.7a) &‘i'g E RS =m<®,

s=]1-N

N-1
(2.7b) Aig Z (lsl/x)ns =0 ,

s=1-N
so chat for large N

(2.8) Var(iu) ~Vy = w/N .
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Condition (2.6) requires the absence of any regularly periodic com-
ponents in X. 1f any were present, then the autocovariance function R
would contain undamped cosine terms that would violate (2.6) and prevent
the convergence of (2.7b). The following example demonstrates the truth

of this assertion. Let xc be defined by
(2.9) xt = 3 s5in bt + Yo »

where a is a random variable with zero mean and unit variance, b is a
constant, and y is a covariance stationary sequence with mean v and

autocovariance function P. Moreover,

(2.10) limP_ =0.
s s

Then X has the autocovariance function

(2.11) R.s = cos bs + Ps

and, for a sample of N observations,

N-1
(2.12) Var().{N) = (1/N) E (1 - |s]/N)(cos bs + P .
s=1-K

Now

N-1
cos bs = sin [b{(2N - 1)/2}/sin (b/2) ,

s=]1-N
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N-1

E |slcos bs = N sin{b(2N-1)/2)/sin(b/2) - [1 - cos(Nb)]/{Zsinz(bIZ)},

s=]1-N
so that
N-1
z: (1 - ‘s‘lﬂ) cos bs = [1 - coa (BN)}/i2N sinz (/2)] .
s=l-N
Then
(2.13) iz va:(is‘_) = Zys ¥ ZRS .
Sx-: S=--

so that (2.8) does not hold In this case. This result suggests that
any regularly periodic components in the process X be removed prior
to estimating the mean u.
The rezder may wonder why (2.8) is of such great significance,
since m is azn infinite sum of autocovariances. The answer is that m
L

can be compited from altemative formulae whersin the individual Rs s

need not be known. As a result our emphasis Is on the quantity m and

its estimation. The autoregressive represestation, which is to be intro-

duced shortly, provides altemative forsulae for <omputing m.
Condition {2.6) implies that the correlation hetween Gwo events
xs and Xt goes to zero as the interval ‘s-ti becomes large. If wo

impose the added, but mild, restriction that there exists a finite
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interval r such that two events, Xs and Xt, ar> statistically indepen-
dent if |s - t| > r, and that E(}XtIBQ < =, then it can be shown that
che limiting cdistributicn of the quactiry N‘(ig - u) is normal with
mean zero and variance m {7, pp. 215-219]. Hereafter, we assume that
N is sufficiently large for us to use this limiting result.

One of the desirable features of a covariance stationary sequence
is its connection with a seguence of uncorrelated, identically distri-
buted random variables. Using the Wold decomposition theorem {16}, one

may write for X satisfving (2.3) and (2.6)?

=

2 14 v = s z
(2.1%) .{: w + aSYt-s s

s=0 -
where ias; s=0,+1 +2,... 4=} is a sequence of real constants with
x

(2.13) z a

s={)

<= 3

7

and {Yt; t=0,%1, +2 ..., *=} is a sequence of uncorrelated, iden-
tically distributed randor variables with mean zero and variance 62. This

is an appealing form, for we can uow write the autocovariance of X as

2
{2.16) Rs =0 E :acas+t .
£=0

_ For a roncise description of the Wold decomposition theorem,
see 12, pp. 286-2887.




b P S R

Bt i i it R

Dt I 1 e

A s

-12-
so that
- - -2
2.17 Z R =q9 ‘Z 2
(2.17) n= s = a‘( as) .
s=0 v g=0

This result is interesting but, since the sequence Y is seldom
observed, it is difficult to infer the as's statistically. We may

nevertheless benefit from (2.14). Taking z transforms leads to

>

~

&
"

- [ =

s s
PIEECEED IED IEL A
s=() s=0 t=0

= A(2)¥(2)
(2.18) A(z) = Z‘s‘s
s=0
Y(2) = ZYS‘S )
sa0
Note that
(2.19) AQ) = Eas .
s=0

i
o= v‘-Az(l).
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1" 4
Under fairly nild conditions oa [A(z)} 1 ve may write

B(2)X'(z2) = Y(2)

B(z) = 1/A(z)
(2.20)

bzs.
Z s

s=l)

B(z) =

On raking the inverse transform we have

1 - .

s=0

(2.21)

vhich is called the auforegressive representation of X.

2= czlsz(l) = ozl ‘ S : bs)z .
s=0

2 .
7f wve can estimate & and the bs's, then we can estimate m. In its

Notice that

(2.22)

present form, (2.21) does .ot enable us to estimare these quantities
by conventional methods. We have already assumed that the zeros of

A{z) = 0 do not lie on the unit circle. If we also assume that the

zeros of B(z) = 0 lie outside the unit circle, then one wmay write (2.21) as

Ysee WRiccle T15,pp. 26-271.
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b =0 s<0 >

(2.23)

-}
' =
stxt-s Yt )
3=0

Moreover, the moving av.rage (2.14) is expressible as

' 3
(2.24) X; zas’%-s-

s=(

Express:ion (2.24) has an intuitive appeal, for ft implies that Xt is
a linear combination of uncorrelat.d, identically distributed present

and past events.

The number of coefficients in the b sequence remains to be con-

sidered. Suppose that

b =0 9>p>o,

so that
p
1 ]
(2.25) E bsxt_s = Yt .
s=0

One would normally expect thot after some lag p, the conftribution to

the behavior of xt made by variables X . would be

t-p-1’ xt-p-Z’
negligible, so that (2.25) would adequately descrlibe the relationship
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betweer X' and Y. This meauns that we can find a linear combination

of present and past values of X' that form a sequence Y of uncorreiated,
. . : . 2
identically distributed events with mean zero and variance o

-

Using {2.25) leads to

m = Ozlbz ,

(2.26)
p

b = z b .
s

8=

. 2 P .
To estimate G and the coefficients in the b sequence, we apply the
linear least-squares method to a sample of observations on X using the
autoregressive representation (2.25). We can subsequently estimate

m by substituting estimates of 02 and the bs's into (2.26). The sample

variance of the sample mean is then m/N.
It is instructive to compare m with N Var(i“) to measure the ade-

quacy of the approximation. Suppose X has the autoregressive represen-

tation

(2.27) X, -eX,_, =¥, lel <1,

so that
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R, = o’ *l/c1-g?

(2.28) N Var(iN) = 1/(1-3)2 - Zg(l-gN)/[N(1+g)(1-g)3]

n = 1/(1-)° .
Notice that the restriction ]g‘ << 1 {s equivalent tc requiring
(2.29) B(z) =1 -gz2=0

to have its root outside oS the unit circle.

Figure 1 shows the ratio
- X y/v.1¥
(2.30) q [vax(xu)/vu‘

for several values of g and varying sample zizes N. The square root
comparison is appropriate, for it is the standard deviation of the
sample mean that determines the width of a confidence interval for

the population mean. Notice that for !gi < 0.50, the error of approxi-
mation is less than 5 percent for N > 25. For lg‘ = 0.95, the error

i1s about 10 percent foer N ~ 100.

The error patterns differ noticeably for positive and negative
values of g. For positive values, m alvays cverestimates N Var(iN);
for negative values, it always underestimates it. Alsgo, N Var (iN)
oscillates when g < 0, the pattemn being most apparent for small N.
From inspection of Fig. 1, it is clear that choosing an even value

of N improves the approximation.
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Suppose we write
r P
= ¢ = - 1
z, s t-s E b~xc- +Yt ’
s=0 s=r+l
(2.31)
bO = l;bs =0, 3>p,
so that
| P
t = - H 4 - - b .
(2.32 l’:(xt--r:—lzt) Zosg(xc-sxt-r-l) z: SRS-t-l
s=0 s=0

Here Zt is a conditional random variable derived by removing the

linear effects of X'

£-1® x;_r from x;. If r = p, then all che linear

effects of past events have been removed from xé so that
¢ =»
a(xt_p_lzt) o,
(2.33)
bp+1"05
This result is important, for it gives us a way of determining
p, the order of the autoregressive representation. Suppose we esti-
mate the coefficients in R autoregressive schemes of orders 1, ..., R.
We then test the significance of the last estimated coefficient i1
each scheme. By choosing R sufficiently large, we can find a vslue

p < R beyond which all remainin; last estimates are insignificanat.
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It is important to check a number of schemes for significance
rather than proceeding stepwise, successively testing the last esti-
mate, and stopping when the coefficient is insignificant. It may

occur that a coefficient br for R < p vanisnhes. Proceeding in a step-

wise fashion would cause us to Stop testing prematurely.
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3. STATISTICAL INFERENCE

Consider a set of N observations, Xl, veny XN, that we wish to fit

to an autoregressive representation:

r
(3.1) st(xs_sm) = Yr_ .
s=0

We first adjust for the sample mean,
. o
{(3.2) Xc = Xt XN »

and then compute the sample autocovariances,

N-t
(3.3) Cyr= (U D XX 7201, ... R

t 4T
t=]

The quantity R is the highest order of the auto:egressive schemes that
we plan to test. Since we plan to compute estimates for schemes of
successively higher order, we use a time-conserving, recursive estima-

tion procedure suggested by Durbin [3], which Whittle also describes
{15, p. 37].

»~

Let br+1 s be the sth lagged estimated coefficient in the scheme
»

of order r+l1, and let

-~

(3.4) byo=l =01, .., RL
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Then from the r  order schere, where r = 3, 1, ..., R-1, we conmpute
r
-~

v = b C

T Z r,s N,s
s=0

»
24

Y =zbr,scN,r-s+l

, s=0
(3.5
= -w [v
r+l,r+l r/ r
-~ -~ - ”»
b_, =b +b b s=1, ..., r .
r+i,s r,s r+l,v+l r,r-s+l i ?

The sample residual variance that is an estimate of 02 is

N rr+l
"2 -1,-1 L Y s 2
Fe 1 = (N - X - = e - .
(3.5) 41 & r ) E ! br+1,s('(::-s XN) r=20, ,R-1
t=r+l1 ts=0

Using a result based on Whittle [15, pp. 72-73], one may show that

for large N

~

var(br’t} ~ -.ur/N

w=1-b2 .
T r,r

If the coenfidence interval

(3.7) b, * P(wr/rv)’5

covers zero, then we accept the hypothesis that bt . = 0. The quantity

P is the point on the nommal curve corresponding to 3 significance level

o, where
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3 2
(3.8) (Zﬂ).lj S e ™ lzdx =1 - i .

-

This method of determining p is based on the testing procedure
described by Jenkins and Watts in [8,pp. 189-200]. There the test
statistic has the Student t distribution but, in the preseat context,
we assume N to be sufficiently large so that the normal approximation
is acceptable. Quenouille [13] has described ar alternative and more
precise large sample “goodness of fit" test for autoregressive schemes.
Unfortunately, his test requires several more complicated computations
than those described above, and it does not appear to be easily in-
corporated into a simulation program.

Suppose that br . is tested foz significance for r = 1, ..., R,

»

and that the coefficient bp p* P < R is significant, but the coeffi-

cients br ¢ are not significant for r = p + 1, ..., R. Then we choose
»

the order of the scheme tc be p and estinate m by

P
“2 SN2
(3.9) apl( E bp") .
g=0

Three questicns remain to be answered here. One is the choice
of R; the second, the choice of the initial sample size; and the third,
the choice of a and thereby P. The larger is R, the better is the

chance of including the correct p within the schemes tested. But low-
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order autoregressive schemes often suffice to acccunt for the auto-
correlation structure ir X and, consequently, choosing R to be 10 should
be more than adequate. Imn our work we have chosen R to be 4 2nd 5.

The steps that we have so far described are based oa an initial
sample of N observations. For the normasl approximation to be acceptable,
we require that N - R > 30 so that the initial sample size N exceeds
R + 30; how much greater it should be depends on the cost of collecting
observations, a point to which we return in Sec. 6.

Earlier we spoke of testing the last coefficient in each of the R
autoregressive schemes estimated. We then have a multiple testing prob-
lem and, if we choose a significance level o for each test, the signi~
ficance level for the multiple test will be greater tham ¢. The greater
R is, the greater the divergence {s between a and the significance level
for the multiple test. It is therefore recommended that the choice of
o be less than one would customarily use in testing a single hypothesis.

This divergence is also a good reason for keeping R small.

LIRARRIERY
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%. RELIABILITY CRITERIA

The purpose of the present research is to determine the sample
size needed to estimate the population mean with a specified accuracy
or reliability. Since we are treating the sample cean RV as a normal

variate with approximate variance m/N, we specify reliability by oeans

of the confidence statement

&1 eCli, - vl < oy <1 -3,

where the confidence level 8 is a small probability such as (.05 or

0.10, and Q is the normal point corresponding to

e,
(Zﬂ)-llz S e * lzdz =1-3/2 .

Bl

We may also write (%4.1) as

(4.2) Pr()-(h, - Q\[::IN <p< iﬁ + Q"g/ﬂ) ~1-8,

and we note that the larger is N, the shorter is the confidence interval

around u.
Suppose we wish to collect a sample size such that the variance of

the rasulting sample oean is less than or equal to V with probability

1 - 8. That is,

(4.3) m{_im-qv'?<u<iw+qﬁ!)~z-a.

To determine N* we note the equivalence of (4.2) and (4.3) so that
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(4.9 V = ofNk
(4.5) N* 5 o/V .

I1f » vere kaown a priori, then the determination of N* in (4.5)
would follow directly. Since we only have an estimate i »f m, it is
natural Zo replace m by ; in {4.5) and so estimate N*. As a fizst
2pproxination, this is a reasonable approach. Figure 2 shows a flow
chart of an iterative proccedure for determmining and collecting N¥* ob-
servations.

Notice that we collect v(8% - N), not ¥ - XN addizional observa-
tions. This scaling increases the number of iterations, but, more
izportant, it decreases the total number of unnecessary observations
collected. Since the cozputer time saving will generally be =much
greater with regard to the avoidance of collecting unnecessary obser-
vations than the time expended on additional iterations, scaling is
desirable. In the exatples to be presented in Sec. 8, y was set equal
to 1/3 and 1/2 for comparison.

The specification of V is a statistically oriented constraint in

tems of population parameters. Often we prefer a confidence statement
(%.6) Pr(ix*-c<u<%ﬂ+c)~l-3,

where c is a specified constant. Here we wish to determine a sacple
size N* such that the probability is about 1 - 8 that the difference
between the sample and populacion means does nct exceed t =. This

is an absolute reliabilify criterion to be met. To determinz N* ve
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note that (4.2) and (4.6) are identical for

(4.7) c = Qyjm/N*
so that
(4.8) N = m(Q/c)? .

And we note that the relationship between V and ¢ is
V= (c/Q)2 .
As an alternative, we may wish to determine N* such thsat
(4.9) p:(:‘cm-cp<u<im+c)~1-a,

go that the probability is 1 - B that the difference between the sample

and population means does not exceed + cu. Using (4.2) again, we have
. 2
(4.19) N* = m(Qlcp)” .

This is 8 relative reliability criterion. Notice in {(4.8) and (4.10)
that haiving c causes a fourfold increase in N¥. Here m and p are un-
known, sc we replace them in (4.13) by ; and i“* .

Both the absolute and relative criteria are being determined in
(4.8) and (4.10) using Q from the normal distribution. In the sbsolute
case we know from theovetical considerations that failure to account

for the substitution of m for w makes Q smaller than f{t should be and,

therefore, cauases an underestimate of N*. For the relative case, the




problem {s further compounded by the suabstitution of iN* for u.

By drawing several analogies to the case of independent observa-
tions with unknown mean and variance, we csa introduce a correction
factor for Q to account for the unknown m. This is done in the next

secticn.
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5. IMPROVED CONFIDENCE INTERVALS

The mean and variance of the process under study are p and RO. re-
spectively. Let us now consider a hypothetical process made up of in-
dependent events each with mean g and variance Ro. For L observations
the variance of the sample mean of the hypothetical process is RO/L‘

In the process under study it is m/N for iazge N. Equating these sample

mean variances, we have
(5.1) RO/L = n/N ,
so that, with regard to the sample mean variance,

(5.2) K=N/L = m/Ro

is the number of observations to be collected on the procecs under study
that is equivalent to collecting one independent observation on the hy-
pothetical process.

Suppose we have an estimate co of R, for the hypothetical process.

0
Then we use the t distribution with L - 1 degrees of freedom, together
with iL and COIL, to ccmpute a confidence interval for u. The use of

L -1 instead of L is due to the substitution of iL for p in C In

0
the present study we may derive a more representative confidence interval
for u by using the t distribution with iu, and C,/L with L - 1 equiva-

lent degrees of freedom, where

(5.3) L = N/K = NRy/m ,
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the loss of une degree of freedom being for the sample mean substitution.

~

To estimate L, we replace = in {5.3) by m.

To incorporate a table of the appropriate critical values for the
t distribution into a computer program seems undesirable since this
wculd require a value for each number of degrees of freedom for 2ach
8. Instead, we many use formulae for the asymptotic expansion of the
critical value of t around the critical value of the normel distribu-
tion for a given . The interesting characteristic of the asymptotic
expansion is that it s a power series in inverse powers of the number
of degrees of freedom so that we may compute Q for a given £ simply by
inserting the number of degrees of freedom in the formulae. These for-
rmulae may be found in [14, p. 948].

It is to be noted that the use of the t distribution corrects for
unknown m. At the present stage of research no correction can be offered
for the unknown g in the relative reliability case. Nor is their any
ad justiwent for the use of an estimate for L. To check on the extent of

degradation due to these omissions, our examples are based on the rela-

tive reliability criterion.
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6. BIAS ADJUSTMENT

At the beginning of the simulation experiment, a number of vital
variables are assigned predetermined values to "prime' the system. This
procedure establishes a set of initial conditions and, because of the in-
herent dependence among events xl, the first observation on the process
of interest 18 a function of thegse initirl conditiors. The second ob-
servation XZ is also a function of these values but to a lesser extent
than x1 is. Successive observations are less dependent on the initial
conditions so that eventually events in the simulstion experiment are
independent of them.

Because cf their dependence on the initial conditions, observations .
near the beginning of the experiment are not representative of the pro-
cess of interest and their inclusion iIn iN makes this quantity a biased
estimator of the true xean u. As N becomes large, the bias goes to zero
since early observations become less influential on the average. But
for moderate N, the bias may be significant and should be reduced if
possible.

We noted that K i{n (5.2) essentially measures the number of auto-
correlated observations per independent observation. Intuitively, we
therefore expect the correlation between observations K units apart to

be low. For example, in the first-order processa described earlier we have
(6’1) K= (1 + z)rl(l - 8) »

so that the correlation between the first and K + lat observations is
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(6.2) g 118/ (78)  1y2 L 3534
As a first step toward reducing the influence of initial conditions,
we remove the first K observations from the sample. Then we have the

sample mean

N
- 1
(6.3) K~ NK Z X, »
taK#l
with
) 2, 2, 2, 2, .
(6.%) Vyx = MWK = /0BT = o JINb2-5 IRy] .

The confidence interval for iz is then computed using the t distribution
with L - 2 "equivalent" degrees of freedom and iN,K and COI(L-I), L
being estimatred as before.

Figure 3 is a flow chart that illustrates one way of including
the bias adjustment. When the sample size is judged sufficient, the

si-;ple mean is recomputed using the newly ‘:stimated bias adjustment K.

Lol -

The estimates m and L are not recomputed, since our experience has shoun

that a recomputation of these quantities makes little difference.

¥-2
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7. EXAMPLES

This section presents four examples to illustrate how the pro-

posed technique works. The first three examples are zero-, first-

; and second-order autoregressive schemes for normal stochastic sequences.
One—-hundred reolications were collected on each example to enabie mean-
ingful comparisons for different significance levels a in deternining

F the order p of tae autoregressive schemes and for different values of

Y, the scale factor used in collecting additional observations. The

H

fourth example is a first-come, first-served single-server queueing prob-

(bl il

lem with independent and exponentially distributed interarrival and

o

service times. The purpose of this example is fo study a problem more

closely akin tc those usually analyzed in discrete event simulation

experiments and also one in which the underlying distributions are not

i s ik M

nomal. Arnalytical solutions are available for all four examples and

serve as a check on the technique. The comsputer program was written

in the SIMSCRIPT II program=ing language [10].

In the first example w2z considered a stochastic sequence where

hailu

3 (7.1) X, =0.5+Y,

pratad et e MR

Y being nomal with

(7.2)

‘1 t=s

lo téds .

TR
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Then
(71.3) s(xt) =-u =5,
and for a sample of N observations,

(7.4) v.:(iu) = 1/N .

In the second example we considered a first-order scheme

(.5) X, =0.5% _, + .5+,
so that
(7.6) E(X) =n=~1,

Var(X) ~ 4/N
And for the third exacple we studied a second-order scheme |

¥p 205K, 3 = 2K, 405 41,

1

a.7) E(:(t) =y = 2/3

Var(iﬂ) ~ 16/(9%) .

The quantities Var(is) were computed using (2.26). The coefficients in

the second-order scheme were chosen to illustrate how a higher-order

autoregressive representation does not necessarily iamply more auto-

correlation in the sequeace and, hence, a iarger Vat(ix).
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The objective in all three examples was o obtain sample sizes

*
N such that

Pr(‘ix* - ui <cu)y~1-23,

(7.8) c =0.20 ,

w
]

0.10 .

Using (%.5), the reguired sample size for esch exarple was
7.9 X = (16.4) ~ 269 ,
so that the respective sample mean variances were

Var(X,j = 0.003717 ,
(7.10) Var(X,) ~ 0.0:4370 ,

Var(X,) ~ 0.006609 .

For each exanmple, two significance levels for determining the auto-
regressive order were studied. They were o = 0.025 and a = 0.05. Also»
two scaling factors were examined for determining the number of addi-
tional observations to be collected. They are v = 0.5 and.Q = 0.3333.
There{ore each example contained four cases.

The results for the total of mwelve cases, each containing i0C

indeperdent replications, are presented in Table i, where

I = |




= order cf the autoregressive schexe (Sec. 2)

p:

o = significance point in test to determine p (Sec. 3)

= weightzing factor for newly computed required sample size (Sec. 3)

-
1}

V., = approximation to variance of sample cean {Sec. 2) .
a%

Ia all expericents, Vx was close to Vat(ix).

Colurm % lists the average required sample size computed on the
last iteration of each experiment. Column 5 lists the average sa=zple
size coliected on the last iteraticn, which is paturaliy greater than

he corresponding quantity in cel. 4 since it is precisely this condi-
-ion that terminates the experioent. The quantities 'n parentheses are
the sample standard deviations. The highest order autoregressive scheme
R considered was 5.

Notice that increasing o irom 0.023 to 0.05 causes slightly less
than a doubling in col. 8 icr p = 0. A less marked increase occurs
for p=1, 2. Also notewcrthy is the general increase in col. 8 for
a given o as p increases. These increases would te, in fact, larger
if R wvere greater since more tests would be performed. Since we ex-
pect p > 0, it is advisable to make o small and also tc restrict R.

The choices of a = 3.025 and R < 4 appear %o be acce?table operating
craditions in the cases described.

Wheu y is reduced from 0.5 to 0.332, the excess sample size {col. 6)
becomes smaller. Cocpared with the theoretical Nk of 269, the use of

g = 0.5 causes an average of 1.1746 observations to be collected for

every required observation, wheresas the use of a = 3.3333 requires an
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Table 1
TEST RESLLIS FOR 100 REPLICATIONS
(Tieore.ical N =269)
Average i '
- - — T :
M @ 3 ) I IO ) (8) IR AT
. ! >robability ‘
Finat N Final N Fingl No. of o: Choesing p| Cample ,Theorer:. ..
P a v (Required) | (Collected) N-N Iterations lncorrectly Vq ; v,
0 0,025 0.5000 277 323 46 4.21 0.05%%6 i .003543 3 NS TR
(85.0) (148.3) i .
0.3333 269 275 6 6.27 0.0622 .00377)
(27 9) (96.8) : i
0.05 0.5000 268 313 45 4.25 0.1039 : 0.003593
(92.2) (181.6) ;
0.333 269 283 14 6.68 | C.17%5 0 003604
(78.7) (100.5) | :
1 0.025 0.5000 253 301 42 i 4,12 X 0.1533 1 3.013965 § 3.01.372
(107.1) (163.7) i
0.2333 245 263 18 5.6b 0.155%5 0.014843
103.4 (152.8) i
|
0.05 0.5000 254 310 56 4.0] 0.1845 ~13941 .
(108.7) (195.2)
0.5333 247 260 13 5.39 0.1855 L.l e904
(104.7) (127.2)
2 0.025 0.5000 265 335 70 3.98 0.2136 0.005981 U.060129
(94.4) {197.2)
0.3333 264 287 23 5.62 0.1904 £.006505
(100.5) {136.6)
0.05 0.5000 260 315 53 3.63 0.2342 0.006169
(97.4) (177.5)
0.3333 264 277 | 5.50 0.15636 €.006546
(87.2) (112.0)
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average of 1.0195 observations. The gample standard deviatiomns in
col. 5 are also smaller for y = 00,3333, but the averags number of
iterations (col. 7) is notably increased. Moreover, 27 percent more
CPU time is required for y = 0.3333. These facts suggest that smaller
vy's improve statistical ptecision.but require more CPU time. We now
study the cost of this improved precision.

The actual generation of data used in these experiments consumed
relatively little CPU time so that we may reasonably attribute the
total CPU time to the proposed statistical technique. For y = 0.5,
the program processed 274 observations per second; for y = 0.3333, {t
procegsed 187 observations per second. In all experiments summarized
in Table 1, tha datis were retained in the magnetic core storage unit.

Suppose we theoretically require 2 sample of 10,000 observations.
For vy = 0.5 thie would result in the collecticn of 11,746 observations,
and for vy = 0.3333, 10,195 observations would be collected. Dividing
by the processing times per cbservation, we note that 42.9 and 54.2
seconds are con3ur2d when Y = 0.5 and Y = (0.3333, respectively. Com-
pared to the time ci.sumed in most simulation experimer.ts, this dif-
ference for the two values of y is negligible.

The fourth example ia a single-server queueing problem with in-
dependent and exponentially distributed interarrival and service times
aad a first~-come, first-served queueing discipline. The mean inter-
arriv. sand service times are Xl = 0.25 and 12 = 0.225, respectively,

so that the activity level is

(7.11) p = Ay/A = 0.9 .




From theory we know that the mean queue length is
(7.12) v=p/(1-0)=9,

and its variance is

(7.13) Ry = o/(1 - p)” = 20 .

Using the results of [5 and 12}, the variance of the sample mean de-
rived from cbserving queue length for a time interval (0, T) is for

large T

(7.14)  Var (E) ~p(l + p)i,/[( - p)'T] = 3847.5/T ,

where T is measured in the same time units as A, and Xz.
We recorded queue length at N = T unit intervals. Since some

variation is eliminated by this discrete sampling, we may regard

3847.5/N as an upper bound on the variance of i,, the resulting sam-

I\
ple mean.

As a rellability criterion we chose

(7.15) Pr (jRga -] <) 1-38,
where
{(7.16) c= .3,

g = .10 .

Then using (4.5), the upper tound on N* was 1420. ‘Three sets of rep~

lications were run, each with
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(7.17) a = 0.025 ,
X = 0.,3333 ,

R=5.

R was chosen to emphasize that it need not be fixed at 4 as in the
previous examples. The initial sample size in the first set was
M = 250, in the second M = 500, and in the third M = 1000.

The relevant sample averages are presented in Table 2. Two ten-
dencies are noteworthy. The first i1s the constant underestimation of
the confidence interval width. This is no doubt partially due to the
use of sampling theory appropriate for an adsolute reliability criter-
ion with a relative criterion. The second poiat is the improved es-
timate of sample size as the initial sample size gets larger. Clearly

the choice of initial sample size makes a difference in the final re-

sult.
Table 2
AVERAGES FOR QUEUEING PROBLEM
Sample
Theoretical] M=250 | M=500 | M=1000
.Mean 9 8.21{ 1.15] 8.83
Lower confidence point 6.3 5.86 | 5.89 | 6.41
Upper confidence point 11.7 10.56 [10.42 | 11.22
Interval width 5.4 4.70 | 4.53 | 4.81
Variance of sample mean 2.71 2.10 { 1.90| 2.37
Final sample size 1462a 1068 | 1299 1473
Equivalent degrees of freedem 32 28 33 30
Bias adjustment 43 32 37 46

a
Includes bias adjustment.
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To measure the overail adequacy of the suggested procedure, we
studied the number of times that he generated confidence intervals
included the true mean of 9. These results are presented in Table 3,
where they are dichotcmized by replications that terminated after at
most one iteration and by those that did not. That is, if the experi-

ment terminated on the first statistical analysis, then no iterations

occurred.

Table ?

CONFIDENCE INTERVALS FOR QUELEING PROBLEM

Sample
Include Mean Divided by

M |Iterations | Replications | Sample | Expected| Expected
250 <1 29 8 26,1 0.31
> 1 71 58 63.9 0.81°
Total 100 66 90 9 0.73
500 <1 36 15 3.4 0.46
>1 64 56 57.% 0.97
Total 100 71 9G.0 0.79
1,000 <1 54 36 48.6 0.74
>1 %6 43 41.4 1.04
Total 100 79 90.9 0.88
250 § Modified 28 18 25.2 0.71
Normal 72 57 63.8 0.88
Total 100 15 90.0 0.83

Since 8 = 0.1, we expect the confidence interval to include the
mean in 90 percent of the replications. The last column shows the
vatio of actual to expected inclusions. Notice that for zero or one
iteration the results are considerably poorer than for greater than
one iteration. As the initial sample gize increases, there i8 clear
improvement in the results for zero or one iteration as well as for

the remaining category.
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A priori we generally have little knowledge of what an appropri-
ate gample size is for the experiment to be undertaken. Therefore we

should be suspicious of results generated by zero or one iteration

since early termination implies that our initial guess is close to the
correct answer, a remcte possibility.

One way to guard against premature stopping is to require a mini-
mum of two iterations per eaperiment. To test the effect of this con-
straint, we performed the one-hundred replications again with M = 250,
with the added requirement that 1f any experiment terminated with
N - K useful observations on the zeroth or firast iteration we added
N - K to the required sample size and continued the expeviment. The
1 results are shown in the last three rows of Table 3 and are to be com-
pared with the correspsnding first three rows. Note the gignificant
improvement in experiments that formerly required less than two iter-
ations. It is clear that anad hocrule such as the one just described
improves the statistical properties of the experimental results.

As Table 3 shows, the percentsge of confidence intervals that
include the mean generally falls below that expected from theory. A-
part from premature stopping, we attribute this difference partially
to the use of a relative criterion with a distribution theory for ab-
solute criterien, and to the approximation involved in using theory

developed for independent observations for autocorrelated ones.




One reraining and no doubt crucial consideration is the assump-
tion of normality of iN*' we have used it because it is intuitively
plausible and convenient. It is therefore instructive to study the
sample size problem without this assumption to understand the advan-
tages of the normality assumption. Using Chebyshev's Inequality, we

have in the present setting
(7.18) Pr (|%, - o} S l/rm 21 - 1.

for the queueing problem we Lave

cu = kh/n=2.7,

(7.19) m = 3847.5 ,
N = 1420 ,
so that
1/k% « “é = 0.3704 ,
(2.7)nr
(7.20)

Pr (|Xg* - u] £2.7) 2 0.62% .

This means that, regardless of the distribution of iN*’ the probabil-~
ity is at least 0.6296 that deviations from the mean are no greater
than ¥ 2.7. Our results in Table 3 are clearly better than this low

boundary.




Suppose we wish to make no distributional assumpticn about iﬁ
and to use Chebyshev's Inequality to determine the required sample

size N* for 1 - llk2 = 0.90. Then

k“ =10,
80 that

Pr (giN* -u} £2.7) 2 0.9,
(7.21) kzm/N* - (2-7)2 >

K’ _ (10)(3847.5)

X = 3 3
(2.7 2.7

= 5278 .

Therefore, wa require an additional (5278-1420) = 3858 observationa
to ment the prubability -eguirement. In general, the use of Chebyshev's
Inequality is a luxury that most users prefer to foregc, given the in-

tuitive plausibility of the normality assumption.
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8. THE MINIMUM VARIANCE ESTIMATCR

In Sec. 6, a knowledge of the autoregressive coefficients
{bs; s =0, ..., p} enabled us to reduce the bias in the sample mean

XN' It is only natural tc inquire whether or not a knowiedge of these
coefficients can enable us fo derivse an estinator of the population
mean 2 that has smaller -ariance than EN has for a given sampie size
N. The answer is yes dand ir is, in fact, possible to derive the aaini-
mum variance estimator, shich we do here. To develop the idea, we

neglect the bias due to initial conditions and correct for it later.

Consider the mean estimator

N
(8.1) X, ’th"t ,

t=l

such that

N
t=1

Then

E(YN) =p
(8.3)
¥

Var(XN) = asatns_t.




We cefine the 1XN vector of weights,

(8.42) 8 = (8, ..., 8D .

and the NxN autocovariance matrix,

Ry B R
g, Ry
. z = [3
(8.4b) 2y ) )
Rger .. Ry ]
so that
(8.4¢) Var(zn) =8, L& -

Aa array of the form (8.4b) is called a Toeplitz matrix and has a
number of desirable proverties, one of which will benefit us shortly.
We desire to choose gﬂ to minimize the variance (B.4c) subdject

to the condition (8.2). The weights are then

-1
A, L.,
(8.5) B - ,
S U x")
Ay 2x 25

where lN i3 8 1xXN vector of ones. Then

}M

[

(8.6) var(X) = 1/Qa g;lx").
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The weights are :iunctions oi the inverse of I, and, at {irst

B

glance, one might expect this array tc be beyond us unless we know
211 N autocovariances in (8.4b). Luckily, 2 knowledge of the auto-

regressive coefficients {b ;s =0, ..., p} and the resicual variance
s

2 . . -1 jeo. . - . .
S suflfices to derive fi_\, . Let 37 be the element of the inverse in

row j + 1 and coluan k + 1. Using a result of Whittle {12, p.73],

one may sihow that

ety =Y o _ .
b = (i/57) = (bj_ro!(_r b‘w_jbr__x_k) j, k=0, ... %
r=0
(8.7)
= . >
b g r<9d, T>p.
Then the weights are
k P
a = '3 = i i-’ - 2 3 = . e -
& n N-i EDI‘E(N s)b 3 k =0, ,p-1,
s=0 s=0
(8.8)
P

|
o
S
1N
~
%
‘
[
n
~
(-

S = = N -
a1 K=p, ... N-p,

assuming that N > 2p + i. The variance is then

P
(8.9) Vat(’i’,i) =c /{bz (N - 25)b_3 .
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At least three points deserve =ention. First we note that

2

2

(8.10) iz N var{iﬂ) =c /",

R<

.-

sa that LS ihe corventicnal estimator, is asymptotically zinimum var-
iance. More importan%, however, is the seccnd ohservation that (8.9)

is an exact formula for the variance in contrtast ~o using cthe li=it

2 z < S . .
o /(sz) for kx- The third point is that for a scheme of order p, observa-
tions p, ..., & - p receive eaual weight so that the effect of autocor-
relation is felr at the ends of “he tinme senes.

To compare iN ani ?%, a furthe- exarrle is helpful. Consider the

first-order autoregressive schexze (2.3)) again. ¥We have

2. = R - + 2g1
1 "N 11-‘(1 g) g- ’

(8.11) § =(1-g)/iR(1-g) +287 k=2, ..., 8-1

3¢
[]

var(¥) = 1/IN(1 - 3)2 + 2g(1 - )1 .

Rotice that for 0 < g < 1 the first and las:t observations receiv: the
largest weights. Since the first observation is subject tc the
greatest bias from the initial conditions, it is important to remove
this bias when the minimum variance estimator is used. By contrast,
we note that for -1 < g < 0, the first and last odservations receive
less weight than the remaining observations.

Let N be rhe regquired sample size for a specified reliability

e

using; (2.5a), and iet N be the required sarple size using (8.1)
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Fig. 4--Comparison of EN and ﬁk for first-order autoregressive scnemes

Figure 4 shows N/§ for values of N, and g = 0.95, 0.99. For g = 0.95,
the advantage of ;N is most outstanding for sample sizes of less than
100. The desirability of ;k therefore i3 most apparent when high unit
collection costs require a limit on the sample size. Perhaps more im-
portant is the fact that the expression for the variance is known ex-
actly for any order scheme.

The biags adjustment can be introduced here simply by discarding
the first K observations and using (8.1), with N replaced everywhere

by N - K, provided that N - K 2 Zp + 1. The new mean estimator is

then

N-K
{8.12) xN,K = E etxu_x ,

t=1

with variance

P
(8.13) Var('i'N’K) = czl[bE(N -K - 25)bs] .
s=0

v
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*
Suppose that it is desired to compute N satisfying the absolute

reliability criterion (4.1). Using (7.9) we have

P
(8.14) N = m(efe)? + (2/0) Y sb_
s=0

1f the relative criterion (4.9) is used, we have

p
{8.15) N* - m[Q/(cu)]z + (Zlb)Zsbs .
s=0

If the only specification is that the variances be less than or equal

to V, then
td
(8.16) N = a/v + (2/b) sb_ .

This is the criterion shown in the flow chart in Pig. 5 with the bias

correction. 1t will be helpful to note, when computing the 81'3, that

. sa e
%1 "% >
= - v - -
(8.17) prrek = Sok " O v OB, k=1, ...,p-1,
 TOORLL k=p, ..., N-P>

P
o' = 1/{ Z(N - 28)bs] .
t=)
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9. CONCLUSIONS

This Memoranaum has presented a number of ideas which, when taken
together, enable the user to derive results from his simulationr experi-
ment with a specified accuracy. Moreover, the results are obtainsble
without user interactions with the ongoing experiment.

In contrast to the spectral approach [5,6], which often requires
the computation of a large number of autocovariances to estimate the
variance of the sample mean, the suggested autoregressive approach re-
Jquires R sample autocovariances where R need not exceed 4 or 5. The
autoregressive approach also supplies more objective estimates of the
equivalent degrees of freedom that in turn permit the computation of
confidence intervals explicitly acknowledging th: estimated variance
of the same mean. The ability to correct for bias due to infitia: con-
ditions is also noteworthy.

The Memorandum has dealt with the problem of determining size for
estimating the mean. An ancillary problem that deserves attention 1is
how to estimate the mean efficiently. To this end, Sec. B has described
the minimum variance unbiased estimator, which turns out to be a func-
tion of the autoregressive coefficients. No doubt such results will
interest thos:- concerned with variance reduction techniques.

The flow charts provide procedural assistance for implementing
the techuique described. The omission of an exanple using the minisum
variance estimator is deliberate, since we prefer to learn more sbhout

the resulting sampling properties before using it extensively.
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